Regulations for research related to devices, in vitro diagnostics  (IVDs) and digital therapies are different from those governing drug  development. Although the drug requires a phase I-III of the hospital and is the subject of follow-up support, digital therapy, devices  and  IVD can take advantage of bench tests, animal studies, pilot studies and training  collections.  These are often followed by validation studies, pivotal trials, literature  reviews and even real-world evidence studies, depending on the intended purpose of the individual product and the level of risk.

Medical devices, IVDs and digital  therapies can bring significant health benefits to patients of all ages, including the healthy and those with various medical conditions and disease burdens. Translating the changing principles for these devices is often a unique challenge for emerging biotech companies. Keeping up with  regulatory requirements for a complex  class of medical devices can be overwhelming, even for an established  life sciences company. How do you  know if a clinical trial is required for your device? These are some ways to decide if a clinical trial is necessary and go to the compliance of a complex  class of medica l devices. 

It is important to understand how the product interacts with the patient, and how important it is to the  patient's  health. In other words, what are the risks and benefits of the product? The greater the risk, the more likely a  marketing authorization process or  compliance testing will be required.

In the United States, medical devices, IVDs, or digital therapies fall into one of the following categories:

Class 1: Innocuous, low risk to the patient and subject only to "general control" regarding registration,  labeling and marking.


Class 2: Products  that present  a high risk for the patient;  Most  products in this category require 501(k) premarket certification, which means  detailed comparisons with devices  already on the market.

Class 3: applied to the most dangerous products, or class 2 products are the first in their category. These products will require clinical trial data to  come to market, but there are fewer participants required compared to drug trials.

With intention, expression and behavior

There is often confusion or confusion about usage and indications for usage. Think about  the purpose or purpose of the intended use (for example, what the device does) and the indications for use are the number of patients, diseases, conditions  and time of use.  Also, consider  the  intended users and usage environment. 


These claims are those on the product label and must be clearly proven with clinical evidence.

Consider three examples to find  your way: a tiny camera that a patient swallows to take pictures of the inside, a new blood test designed to detect monkey pox, or a mobile app that monitors a patient's A1C level. . The presentation follows the intended  purpose, but it also places the product in the context of disease / health.


It is important to note that  the indicator can change the risk level of the product. In the example above, a camera detects bowel disease, a blood test detects  suspected  disease,  and a mobile health app (MMA)  supports patients with type 1 and type 2 diabetes.

Finally, what is the model of action or mode of action (MoA) of the product, especially in terms of patient interaction? It is very important  to  determine whether the product  poses a dangerous, harmless, dangerous  or  insignificant  risk, and how it works in or on outside the patient. 


This is how the product achieves its therapeutic effect. For example, a harmonic scalpel  that  vibrates as it moves, a COVID-19 test  that  detects SARS-CoV-2 antibodies by 

injecting antigens  into  a person's saliva/nose, and a digital therapy  program that shows one and when  the patient should follow the best. behavior or reinforces good behavior.

Collect and publish evidence

A comprehensive clinical care  generation plan determines what data is critical as evidence  that the product is doing what it's supposed to do safely. Some markets, especially 

the EU, may require printing for product approval.

The most important thing is  to  understand the type of study to be conducted. To find  the  answer, go back to the type of product and the level of its risk to determine if it is necessary to test, and if so, what type. Types of tests include:

  • Pilot or event: a small study to collect safety results, demonstrate ideas and can guide the design of future studies.
  • Test study (training method): a small study designed to test a device or train an algorithm before the  design is frozen.
  • Validation studies: large-scale studies designed to validate the efficacy and safety, or sensitivity and specificity, of certain  tools  and/or algorithms.
  • Demonstration of equivalence: EU differences for documentation and other evidence  comparing against the performance of existing products.
  • In silico: studies designed to  validate data without human trials.
  • Pivot: large-scale statistical studies  to support productivity, safety  and  cost-benefit ratio.
  • Real World Evidence (RWE): Data is collected from real world sources  including registries, electronic health records, administrative statements, etc.
  • Post-sale protection: usually supports a repair or maintenance service.
  • What people do: to describe the use,  functions, signs and instructions by end users.



MEDICAL DEVICES GLOBAL {MDG}